新闻动态

News Center

结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能

发布日期:
2023-07-25

浏览次数:


Ansys Mechanical每年都会持续发布新功能,拓展结构分析的边界,凭借人工智能/机器学习(AI/ML)在资源预测、形貌优化等领域的不断发展,该新版本软件使您能够执行更准确、更高效和可定制的结构仿真分析。


Ansys 2023 R1重点推出了相关增强功能,使您能够使用Mechanical实现更高效、更准确的有限元分析(FEA)仿真,包括:

  • 基于几何结构的重新关联(GBA)

  • 保留几何的网格自适应(GPAD)

  • 计算资源预测

  • 形貌优化

  • 接触设置




1

基于几何结构的重新关联(GBA



Mechanical凭借其能够通过网格划分、设置和求解来处理底层几何结构而闻名业界。老用户可能知道,在编辑几何结构时,Mechanical中的关联性可能会丢失,并且此前在Mechanical中定义的设置会变为未定义的状态。Ansys Workbench虽然具有在几何结构改变后重新关联模型设置的功能,但该过程并非总是万无一失。


如今,当改变几何结构后,您再也不会看到模型树上因为失去关联性而挂满了一连串的问号。在Ansys 2023 R1版本中,您可以高效地编辑模型,并使用新的作用域向导工具自动检测和重新设置作用域。


现在,当您将更新的模型导入回Mechanical时,几何结构中改变的部分将会根据关联性进行着色。然后,您可以通过列表来可视化已重新关联和未关联的项:已被查找到并重新关联的项显示为绿色,具有多个匹配的项显示为黄色,无法自动重新关联的项则显示为红色。


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能




2

保持几何结构的网格自适应性(GPAD



您是否也有过类似的经历:需要在Mechanical中求解一个复杂模型,但您并不熟悉该模型或事先不了解会产生危险应力和应变的区域?在过去,我们有两种方法可以解决此问题:

  1. 第 一种是生成较粗疏的网格,求解模型,并在重要区域细化网格;

  2. 第二种是从一开始就生成过度细化的网格,以准确捕获重要区域。


我们知道这些方法可能非常耗时,因此我们推出了一项新功能来提高耐久性研究的效率。保留几何结构的网格自适应(GPAD)这一新功能,不仅消除了对初始网格过度细化的需要,而且避免了对网格尺寸大小的猜测。


通过GPAD,您可以使用较粗的网格开始仿真,并且在求解模型时,求解器会监控区域中的数量信息(如应力变化),并自动细化网格。网格的细化并非基于此前求解的粗糙网格,而是通过将网格与底层计算机辅助设计(CAD)相匹配来实现,以更接近模型的真实形状。由于网格重划分发生在求解阶段,所以它可以提高准确性,同时无需耗费大量的计算资源。


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能

点击此处跳转原文即可查看视频



3

计算资源预测



由于存在不同类型的单元、材料、接触、接头、边界和载荷条件等因素,FEA仿真的规模和复杂性日益增加。与此同时,无论是在本地还是在云端,高性能计算资源的使用都在呈指数级增长。在这个阶段了解硬件要求,如内存和中央处理器(CPU)的数量,就非常重要。

极大扩展性所需的理想CPU数量至关重要,这有助于提高时间和成本效率。现在,计算资源预测的增强功能使您能够在求解之前,就可预测所需的内存、求解时间和求解器的扩展性能,从而解决此问题。


资源预测使用基于ML的算法来预测复杂仿真模型所需的内存和求解时间。该算法可对此前已求解的仿真的数百万个匿名数据点进行分析,并将该数据与用户求解的模型进行比较,以得出所需的预测结果。此功能可与具有迭代和直接求解器的线性静态和模态分析配合使用,并提供多达32个内核的扩展性能(从Ansys 2023 R1开始)。


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能



4

形貌优化



Mechanical中已逐步集成了参数研究、拓扑优化、点阵优化和形状优化等多种不同的优化技术。在2023 R1版本中,我们推出了一项被称为形貌优化的新功能。


装配式结构设计的性能在很大程度上取决于其自身的重量,尤其是在该结构承受动态载荷时,因此轻量化至关重要。对于薄壁结构,我们无法应用拓扑优化,而且使用其它方法寻找解决方案的效率更低——尤其是当我们具有装配和设计约束时。


而形貌优化非常适合这类情况,我们无需更改设计的厚度或形状,仅使用自由变形方法即可确定网格节点的理想位置。我们还可以使用不同的控件来确保设计的可制造性。这种方法有助于改善噪声、振动和声振粗糙度(NVH);疲劳;碰撞性能;和/或减轻结构的重量。


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能




5

接触设置




对于汽车行业用户来说,白车身(BIW)仿真的接触设置可能是一个非常繁琐的过程。这主要是因为这些BIW仿真涉及各种复杂的特征和许多不同的接触类型,包括粘合剂、焊接、铆接等。在过去创建多个接触需要大量的手动设置,以便用户可以在正确的壳体表面上设置接触。


2023 R1版本的功能增强现在可通过指明目标表面(实际上是双面)来简化设置。它同时考虑了正、负法向目标表面,并且无需创建多个接触定义。


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能

结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能

点击此处跳转原文即可查看视频



相关阅读

Speos material library 材料库提升仿真效率

Lumerical光纤布拉格光栅温度传感器的仿真模拟

使用 Lumerical 对 VCSEL 激光器进行增益仿真

Speos black recording块记录工具 | 简化仿真设计

Lumerical 单行载流子光电探测器仿真方法

光学 | 新Ansys Zemax助力高科技应用创建高保真度设计


结构仿真 | Ansys Mechanical 2023 R1版本的五大新功能


相关推荐

【Lumerical系列】硅基电光调制器(3.1)——常用的光学结构
前面两期我们分别介绍了电光调制中常用的物理效应和常见的几种调制结构,其中...
Maxwell 3D Transient A-phi 求解器介绍(1/5)
Maxwell三维瞬态求解器目前基于方程进行求解。方程是仿真各种低频电磁...
【Lumerical系列】无源器件-复用器件(2)
本期是Lumerical系列中无源器件专题-复用器件的第二期,主要内容为...
【Lumerical系列】硅基光电调制器(2)——常见的三种调制结构
上一期我们介绍了光学调制的基本概念并总结了电光调制中常用的物理效应,对于...